Carlo U. Segre

  • Duchossois领导力教授
  • 物理学教授
  • 材料研究协同访问小组(MRCAT)副主任
  • 中国科学院同步辐射研究与仪器中心主任
  • BioCAT副主任
  • 材料科学与工程教授

Education

B.S,伊利诺伊大学厄巴纳-香槟分校
Ph.加州大学圣地亚哥分校博士

Research Interests

我的研究集中在包括超导在内的复杂材料的结构和电子特性, magnetic, catalytic, 以及储能材料.

Experimental techniques used in my research include; material synthesis through arc-melting, powder metallurgy, and advanced chemical methods; structural characterization of the samples performed by x-ray powder diffraction and xray absorption fine structure; and measurement of electronic properties by resistivity, 磁化率, x射线吸收光谱学. 具体感兴趣的主题包括:

  • 新型电池材料的结构与电化学性能
  • in-situ 燃料电池用催化材料的结构研究
  • 以纳米颗粒和薄膜形式制备的磁电材料和其他钙钛矿材料的结构和电子性能;
  • 核反应堆结构材料的局部结构研究, 包括钢中纳米晶夹杂物的原位腐蚀研究和表征;
  • 同步辐射实验用x射线光学的发展.

我也是印度理工学院的积极参与者 同步辐射研究与仪器中心 (CSRRI); serving as Center Director and as Deputy Director of the 材料研究协作访问小组 (MRCAT),该机构在英国国立科学技术大学(MRCAT)运营着一个材料研究实验设施 先进光子源 (APS). 我参与了晶体光学设备的开发,用于在同步加速器光束线上传输和检测x射线.

自1992年以来,我一直参与 国际桥梁建设委员会. 我们每年冬天组织芝加哥地区桥梁建造比赛,在奇数年组织国际桥梁建造比赛. 这场竞争越来越激烈, 在过去的37年里, 成为许多高中物理科学课程的一个组成部分.

Publications

Google Scholar简介

“被困在氧化锌中的分子状氧化铕团簇几乎不受宿主结构的影响," S. Mukherjee, S.N. Katea, E.M. Rodrigues, C.U. Segre, E. Hemmer, P. Broqvist, H. Rensmo, G. 威斯汀,小202203331 (2022); http://doi.org/10.1002/smll.202203331

一种纤维素衍生的用于快速离子传输的超分子. Dong, X. Zhang, J. Qian, S. He, Y. Mao, A.H. Brozena, Y. Zhang, T.P. Pollard, O.A. Borodin, Y. Wang, B.S. Chava, S. Das, P. Zavalij, C.U. Segre, D. Zhu, L. Xu, Y. Liang, Y. Yao, R.M. Briber, T. Li and L. Hu, Sci. Adv. 8、eadd2031 (2022); http://doi.org/10.1126/sciadv.add2031

“自下而上的钙钛矿簇向高活性铑纳米颗粒向碱性氢的演化," G. Lin, Z. Zhang, Q. Ju, T. Wu, C.U. Segre, W. Chen, H. Peng, H. Zhang, Q. Liu, Z. Liu, Y. Zhang, S. Kong, Y. Mao, W. Zhao, K. Suenaga, F. Huang, and J. Wang, Nat. Commun. 14, 280 (2023); http://doi.org/10.1038/s41467-023-35783-y

“初始结构对锂离子电池高熵氧化物阳极性能的影响”,O.J.B.J. Marques, M.D. Walter, E.V. Timofeeva, and C.U. Segre,电池9,115 (2023); http://doi.org/10.3390/batteries9020115

在中性介质中有效电合成过氧化氢的二维金属有机框架催化剂上的电催化和氧化还原机制的操作阐明," R.D. Ross, H. Sheng, Y. Ding, A.N. James, D. Feng, J.R. Schmidt, C.U. Segre, and S. Jin, J. Am. Chem Soc. 144, 15845-15854 (2022); http://doi.org/10.1021/jacs.2c06810

Y2Ti2O7中电荷转移触发Bi+3近红外发射,用于双模温度传感," X. Wang, F. Jahanbazi, J. Wei, C.U. Segre, W. Chen, and Y. Mao, Appl. Mater. 接口14、36834-36844 (2022); http://doi.org/10.1021/acsami.2c09361

“BaZrO3:Eu+3晶体的激发依赖性光致发光”,S.K. Gupta, H. Abdou, C.U. Segre, and Y. 毛志强,纳米材料12,3028 (2022); http://doi.org/10.3390/nano12173028

咪唑功能化约束磷化钼实现CO2高效电催化转化为乙醇," M. Esmaeilirad, A. Kondori, N. Shan, M.T. Saray, S. Sarkar, A.M. Harzandi, C.M. Megaridis, R. Shahbazian-Yassar L.A. Curtiss, C.U. Segre, and M. Asadi, Appl. Catal. B 317, 121681 (2022); http://doi.org/10.1016/j.apcatb.2022.121681

多织构体系的新型SAXS模型:原位USAXS-SAXS-WAXS在CaCO3煅烧中的应用," M. Strumendo, C.U. Segre, J. Ilavsky, and I. Kuzmenko, Appl. Mater. 今天29,101568 (2022); http://doi.org/10.1016/j.apmt.2022.101568

“氢氧化镍纳米流体阴极具有高固体负载和低粘度,适用于储能应用," S. Sen, E. Moazzen, E. Draxler, C.U. Segre, and E.V. Timofeeva,能源15,4728 (2022); http://doi.org/10.3390/en15134728

原子分散的Mn-(N-C2)2(O-C2)2位在碳上的高效氧还原反应,L. Zong, F. Lu, W. Zhang, K. Fan, X. Chen, B. Johannessen, D. Qi, N.M. Bedford, M. Warren, C.U. Segre, P. Liu, L. Wang, and H. 赵,储能材料. 49, 209-218 (2022); http://doi.org/10.1016/j.ensm.2022.04.016

“木质素衍生高表面积碳的合成及电化学性能”,A.M. Suzanowicz, Y. Lee, O.J.J. Marques, H. Lin, C.U. Segre, and B.K. Mandal, Surfaces 5, 265-279 (2022); http://www.mdpi.com/2571-9637/5/2/19

“一种用于高容量锂硫电池的新型氮化石墨和还原氧化石墨烯基硫阴极," A.M. Suzanowicz, Y. Lee, H. Lin, O.J.J. Marques, C.U. Segre, and B.K. Mandal, energy 15,702 (2022); http://doi.org/10.3390/en15030702

“财政活动, 杂原子过渡金属碳化物在电催化二氧化碳还原反应中的类铜选择性," M. Esmaeilirad, A. Baskin, A. Kondori, A.S. Matias, J. Qian, B. Song, M.T. Saray, K. Kucuk, A. Ruiz Belmonte, P. 纳瓦罗·穆尼奥斯·德尔加多,J. Park, R. Azari, C.U. Segre, R. Shahbazian-Yassar D. Prendergast, and M. Asadi, Nat. Commun. 12, 5067 (2021); http://doi.org/10.1038/s41467-021-25295-y

Mn和Nb共掺杂对低带隙BaTiO3铁电体的结构和电子效应," S. Mukherjee, D. Phuyal, C.U. Segre, S. Das, O. Karis, T. Edvinsson, and H. Rensmo, J. Phys. Chem. C 125, 14910-14923 (2021); http://doi.org/10.1021/acs.jpcc.1c02539

波纹方网化合物Cu3(TeO4)(SO4)·H2O的反铁磁有序和自旋倾斜跃迁," Z.-C. Wang, K. Thanabalasingam, J.P. Scheifers, A. Streeter, G.T. McCandless, J. Gaudet, C.M. Brown, C.U. Segre, J.Y. Chan, and F. Tafti, Inorg. Chem. 60, 10565-10571 (2021); http://doi.org/10.1021/acs.inorgchem.1c01220

Fe掺杂对PbTiO3局部结构和电磁性能的影响,H. Ganegoda, S. Mukherjee, B. Ma, D.T. Olive, J.H. McNeely, J.A. Kaduk, J. Terry, H. Rensmo, and C.U. Segre, J. Phys. Chem. C 125, 12342-12354 (2021); http://doi.org/10.1021/acs.jpcc.1c02297

“纳米li2fesio4 /C阴极局部结构的原位XAS研究”,K. Kucuk, S. Aryal, E. Moazzen, E.V. Timofeeva, and C.U. Segre, J. Phys. 能源学报,034015 (2021); http://doi.org/10.1088/2515-7655/abf543

高压合成双钙钛矿Ba2NiIrO6:寻找铁磁绝缘体,H.L Feng, Z. Deng, C.U. Segre, M. Croft, S.H. Lapidus, C.E. Frank, Y. Shi, C. Jin, D. Walker, and M. Greenblatt, Inorg. Chem. 60, 1241-1247 (2021); http://doi.org/10.1021/acs.inorgchem.0c03402

Mn和Ni在富锂Mn-Ni- fe氧化物阴极中的作用,S. Aryal, K. Kucuk, E.V. Timofeeva, and C.U. Segre, Mater. Today Commun. 26, 101693 (2021); http://doi.org/10.1016/j.mtcomm.2020.101693

“对无序岩盐结构的高容量锂过剩阴极的基本理解," H. Lin, B. Moreno, K. Kucuk, S. Zhang, S. Aryal, Z. Li, C.U. Segre, J. Rodriguez, D. Puthusseri, L. Cai, X. Jiao, and V.G. Pol, J. Mater. Sci. Technol. 74, 60-68 (2021); http://doi.org/10.1016/j.jmst.2020.07.041

Mo3P纳米颗粒上的动力学稳定氧化物覆盖层使锂空气电池具有低过电位和长循环寿命, A. Kondori, M. Esmaeilirad, A. Baskin, B. Song, J. Wei, W. Chen, C.U. Segre, R. Shahbazian-Yassar D. Prendergast, and M. Asadi, Adv. Mater. 32, 2004028 (2020); http://doi.org/10.1002/adma.202004028

“双金属间键作为单原子分散的化学催化剂”,Y. Zhou, E. Song, W. Chen, C.U. Segre, J. Zhou, Y.-C. Lin, C. Zhou, R. Ma, P. Liu, S. Chu, T. Thomas, J. Yang, Q. Liu, K. Suenaga, Z. Liu, J. Liu, and J. Wang Adv. Mater. 32, 2003484 (2020); http://doi.org/10.1002/adma.202003484

“表面修饰加速了钙钛矿氧化物在碱性溶液中的析氢动力学," C. Hu, J. Hong, J. Huang, W. Chen, C.U. Segre, K. Suenaga, W. Zhao, F. Huang, and J. 王,能源环境. Sci. 13 4249-4257 (2020); http://doi.org/10.1039/D0EE01598A

高稳定性锂硫电池用氧化钛包覆双核壳硫纳米复合阴极的合理设计," H. Dunya, M. Ashuri, Z. Yue, K. Kucuk, Y. Lin, D. Alramahi, C.U. Segre, and B.K. Mandal, J. Phys. Chem. 固体149,109791 (2020); http://doi.org/10.1016/j.jpcs.2020.109791

“自发氧化还原连续体揭示了隔离的锝团簇和铁的延迟矿物转化," D. Boglaienko, J.A. Soltis, R.K. Kukkadapu, Y. Du, L.E. Sweet, V.E. Holfeltz, G.B. Hall, E.C. Buck, C.U. Segre, H.P. Emerson, Y. Katsenovich, and T.G. Levitskaia, Commun. Chem. 3, 87 (2020); http://doi.org/10.1038/s42004-020-0334-x

一种高比表面积活性炭的合成及其在有机电解质中的双电层电容性能," Z. Yue, H. Dunya, M. Ashuri, K. Kucuk, S. Aryal, S. Antonov, B. Alabbad, C.U. Segre, and B.K. 高分子学报,2016,33 (2); http://doi.org/10.3390/chemengineering4030043

二氧化锰涂层双核壳纺锤状纳米棒,用于提高锂硫电池的容量保持," H. Dunya, M. Ashuri, D. Alramahi, Z. Yue, K. Kucuk, C.U. Segre, and B.K. 高分子学报,2016,42 (2020); http://doi.org/10.3390/chemengineering4020042

用x射线光谱研究反铁磁LaFe1-xMoxO3中流动载流子的起源," D. Phuyal, S. Mukherjee, S.K. Panda, S. Jana, C.U. Segre, L. Simonelli, S.B. Butorin, H. Rensmo, and O. Karis, Phys. Rev. Mater. 4, 034405 (2020); http://doi.org/10.1103/PhysRevMaterials.4.034405

“一种用于高稳定锂硫电池的新型石墨碳氮涂层双核壳硫阴极," H. Dunya, Z. Yue, M. Ashuri, X. Mei, Y. Li, K. Kucuk, S. Aryal, C.U. Segre, and B.K. Mandal, Mat. Chem. Phys. 246, 122842 (2020); http://doi.org/10.1016/j.matchemphys.2020.122842

“氧功能化的铜纳米颗粒用于太阳能驱动的二氧化碳到甲烷的转化," M. Esmaeilirad, A. Kondori, B. Song, A. Ruiz Belmonte, J. Wei, K. Kucuk, S.M. Khanvilkar, E. Efimoff, W. Chen, C.U. Segre, R. Shahbazian-Yassar和M. [j] .中国生物医学工程学报,2014,33 (2); http://doi.org/10.1021/acsnano.9b08792

“锂离子电池的纳米二氧化锰阴极:热和机械加工的影响”,E. Moazzen, K. Kucuk, S. Aryal, E.V. Timofeeva, and C.U. Segre, J. 电源448,227374 (2020); http://doi.org/10.1016/j.jpowsour.2019.227374

锚定单位点钴催化剂配位环境对CO2加氢的影响," J.D. Jimenez, C. Wen, M.M. Royko, A.J. Kropf, C.U. Segre, and J. 劳特巴赫化学学报,12,846-854 (2020); http://doi.org/10.1002/cctc.201901676

“硫包埋在包裹超薄氟化铝层的空心碳纳米球中,提高锂硫电池的电化学性能。," M. Ashuri, H. Dunya, Z. Yue, D. Alramahi, X. Mei, K. Kucuk, S. Aryal, C.U. Segre, and B.K. Mandal, Chem. Select, 4, 12622-12629 (2019); http://doi.org/10.1002/slct.201903932

“基塔耶夫自旋液体材料Cu2IrO3的静态和动态磁性共存”,E.M. Kenny, C.U. Segre, W.L. Dit-Hauret, O.I. Lebedev, M. Abramchuk, A.   Berlie, S.P. Cotrell, G. Simutis, F. Bahrami, N.E. Mordvinova, G. Fabbris, J.L. McChesney, D. Haskel, X. Rocquefelte, M.J. Graf, and F. Tafti, Phys. Rev. B 100, 094418 (2019); http://doi.org/10.1103/PhysRevB.100.094418

二氧化锰包覆的硫填充空心碳纳米球基正极材料,用于提高锂硫电池的电化学性能," Z. Yue, H. Dunya, K. Kucuk, S. Aryal, Q. Ma, S. Antonov, M. Ashuri, B. Alabbad, Y. Lin, C.U. Segre, and B.K. Mandal, J. Electrochem. Soc. 166, A1355 (2019); http://doi.org/10.1149/2.0321908jes

确定三钼磷化(Mo3P)的电化学析氢催化活性位点," A. Kondori, M. Esmaeilirad, A. Baskin, B. Song, J. Wei, W. Chen, C.U. Segre, R. Shahbazian-Yassar D. Prendergast, and M. Asadi, Adv. Energy Mater. 1900516 (2019); http://doi.org/10.1002/aenm.201900516

用于硬X射线成像的多层硅探测器的初步评估. Li, P. Chu, C.M. O'Shaughnessy, C. Morris, M. Demarteau, R. Wagner, J. Xia, L, Xia, R.-Y. Zhu, L. Zhang, C. Hu, B. Adams, J. Katsoudas, Y. Ding, C.U. Segre, T.A. Smith, and J. Shih, Nucl. Instrum. Meth. A 942, 162414 (2019); http://doi.org/10.1016/j.nima.2019.162414

Sr2Fe1中局部电子结构和氧化物空位形成的高温x射线吸收光谱.5Mo0.5O6-δ固体氧化物燃料电池阳极催化剂.C. D'Orazio, T. Marshall, T. Sultana, J.K. Gerardi, C.U. Segre, J.P. Carlo, and B. 本征布罗特,ACS苹果公司. Energy Mater. 2, 3061-3070 (2019); http://doi.org/10.1021/acsaem.8b01579

"Tetragonal Cs1.17In0.cl3:一种电荷有序的卤化铟钙钛矿衍生物," X. Tan, P.W. Stephens, M. Hendrickx, J. Hadermann, C.U. Segre, M. Croft, C.-J. Kang, Z. Deng, S.H. Lapidus, S.W. Kim, C. Jin, G. Kotliar, and M. Greenblatt, Chem. Mater. 31, 1981-1989 (2019); http://doi.org/10.1021/acs.chemmater.8b04771

“在层状氢氧化物纳米材料中阴离子插入电化学的发现”,M.J. Young, T. Kiryutina, N.M. Bedford, and C.U. Segre, Sci. Rep. 9, 2462 (2019); http://doi.org/10.1038/s41598-019-39052-1

“无团簇掺铒重金属氧化物玻璃的无淬火增强发射”,K. Lipinska, F. Cavallo, A.J. Ayitou, and C.U. Segre, Optical Mater. Exp. 9, 1072-1084 (2019); http://doi.org/10.1364/OME.9.001072

掺杂LaFeO3中绝缘体-金属跃迁边缘的电荷不成比例反铁磁性," S. Jana, S.K. Panda, D. Phuyal, B. Pal, S. Mukherjee, A. Dutta, P. Anil Kumar, D. Hedlund, J. Schott, P. Thunstrom, Y. Kvashnin, H. Rensmo, M. Venkata Kamalakar, C.U. Segre, P. Svedlindh, K. Gunnarsson, S. Biermann, O. Eriksson, O. Karis, and D.D. Sarma, Phys. Rev. B 99, 075106 (2019); 
http://doi.org/10.1103/PhysRevB.99.075106

亚纳米粒子结构对MnO2电池阴极循环性能的影响," E. Moazzen, E.V. Timofeeva, J.A. Kaduk, and C.U. Segre, Cryst. Growth Des. 19, 1584-1591 (2019); http://dx.doi.org/10.1021/acs.cgd.8b01230

纳米licoo2的长期循环行为及其事后分析. Ashuri, Q. He, Z. Shi, C. Chen, W. Yao, J.A. Kaduk, C.U. Segre, and L.L. Shaw, J. Phys. Chem. C 123, 3299-3308 (2019);http://dx.doi.org/10.1021/acs.jpcc.8b10099

"MnFe0.5Ru0.503:一种室温以上的反铁磁半导体. Tan, E.E. McCabe, F. Orlandi, P. Manuel, M. Batuk, J. Hadermann, Z. Deng, C. Jin, I. Nowik, R. Herber, C.U. Segre, S. Liu, M. Croft, C.-J. Kang, S. Lapidus, C.E. Frank, H. Padmanabhan, V. Gopalan, M. Wu, M.-R. Li, G. Kotliar, D. Walker, and M. Greenblatt, J. Mater. Chem. C 7, 509-522 (2019); http://dx.doi.org/10.1039/C8TC05059G

“用非原位USAXS分析cao基CO2吸附剂的结构特性”,A. Benedetti, J. Ilavsky, C.U. Segre, and M. Strumendo, Chem. Eng. J. 355, 760-776 (2019); http://doi.org/10.1016/j.cej.2018.07.164

富锂电池容量激活和降低电压衰减的结构研究, 锰镍铁复合氧化物阴极," S. Aryal, E.V. Timofeeva, and C.U. Segre, J. Electrochem. Soc. 165, A1-A8 (2018).

锂离子电池高可逆磷化锡/石墨复合阳极的原位exafs衍生机制," Y. Ding, Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 1702134 (2017).

晶格模板和电偶联在提高Ni(OH)2/Co(OH)2芯壳电池阴极可逆容量中的作用," E. Moazzen, E.V. Timofeeva, and C.U. Segre, Electrochim. 学报258,684-693 (2017).

纳米悬浮氧化还原液流电池的β-氢氧化镍正极材料,Y. Li, C. He, E.V. Timofeeva, Y. Ding, J. Parrondo, C.U. Segre, and V. Ramani, Front. 能源11,401-409 (2017).

用于水电池阴极的二氧化锰纳米颗粒的受控合成:多态性-容量相关性," E. Moazzen, E.V. Timofeeva, and C.U. Segre, J. Mater. Sci. 52, 8107-8118 (2017).

具有高固体负载和低粘度的电活性纳米流体,适用于可充电氧化还原液流电池," S. Sen, C.-M. Chow, E. Moazzen, C.U. Segre, and E.V. Timofeeva, J. Appl. Electrochem. 47, 593-605 (2017).

“以超薄PbS纳米晶体为模板的二维杂化有机卤化物钙钛矿,”J. Pradham, S. Mukherjee, A.H. Khan, A Dalui, B. Satapati, C.U. Segre, D.D. Sarma. and S. Acharya, J. Phys. Chem. C 121, 6401-6408 (2017).

"Ba3(Cr0.97(1)Te0.03(1))2TeO9:在寻找Jahn-Teller扭曲的Cr(II)氧化物,“M.R. Li, Z. Deng, S.H. Lapidus, P.W. Stephens, C.U. Segre, M. Croft, R. Paria Sena, J. Hadermann, D. Walker, and M. Greenblatt, Inorg. Chem. 55, 10135-10142 (2016).

“二氧化锡原子层沉积机理的合成和光谱研究”,M.S. Weimer, B. Hu, S.J. Kraft, R.G. Gordon, C.U. Segre, and A.S. 郝,有机金属35,1202-1208 (2016).

锂离子电池用锡和SnO2纳米材料阳极的电位分辨原位x射线吸收光谱研究," C.J. Pelliccione, E.V. Timofeeva, and C.U. Segre, J. Phys. Chem. C 120, 5331-5339 (2016).

“用拉曼和EXAFS光谱分析Tm3+掺杂As-S-Ga玻璃的结构”,A. Galstyan, S.H. Messaddeq, C.U. Segre, T. Galstian, and Y. Messaddeq, J. Non-Cryst. 固体432,487-492 (2016).

“用x射线吸收光谱研究sn掺杂Ga2O3的掺杂活化”,S.C. Siah, R.E. Brandt, K. Lim, L.T. Schelhas, R. Jaramillo, M.D. Heinemann, D. Chua, J. Wright, J.D. Perkins, C.U. Segre,

R.G. Gordon, M.F. Toney, and T. Buonassisi, Appl. Phys. Lett., 107 252103 (2015).

工程纳米流体电极:控制γ-Fe2O3纳米颗粒的流变学和电化学活性," S. Sen, E. Moazzen, S. Aryal, C.U. Segre, and E.V. Timofeeva, J. Nanopart. Res., 17 437 (2015).

碳酸钙碳酸化过程中CaCO3晶体的演化:原位同步辐射x射线粉末衍射的临界晶体尺寸和速率常数测量," A. Biasin, C.U. Segre and M. Strumendo, Cryst. Growth

Des., 127 13-24 (2015).

“锂离子电池ZnO阳极容量衰减机制的原位XAFS研究,”C.J. Pelliccione, Y. Ding, E.V. Timofeeva, and C.U. Segre, J. Electrochem. Soc., 162 A1935-A1939 (2015).

“在空气中合成高效固态发光CuCdS纳米晶体”,A.H. Khan, A. Dalui, S. Mukherjee, C.U. Segre, D.D. Sarma, and S. Acharya, Angew. Chem. 127, 2681-2686 (2015).

用同步辐射原位XRD研究CaO-CO2反应动力学,A. Biasin, C.U. Segre, G. Salviulo, F. Zorzi, and M. Strumendo, Chem. Eng. Sci. 127, 13-24 (2015).

“Sn3O2(OH)2/石墨复合电池负极纳米材料容量衰减机理的原位XAS研究”, C.J. Pelliccione, E.V. Timofeeva, and C.U. Segre, Chem. Mater. 27, 574-580 (2015).

“非晶W-S-N薄膜:超低摩擦背后的原子结构”,L. Isaeva, J. Sundberg, S. Mukherjee, C.J. Pelliccione, A. Lindblad, C.U. Segre, U. Jansson, D.D. Sarma, O. Eriksson, and K. Kádas, Acta Mater. 82, 84-93 (2015).

胶原蛋白和拖丝蛋白的e纺复合纤维:纤维力学, biocompatibility, 及其在干细胞分化中的应用, B. Zhu, W. Li, R.V. Lewis, C.U. Segre, and R. Wang, Biomacromol. 16, 202-213 (2015).

局部结构演化的微观描述和固溶体中化学压力概念的评价, S. Mukherjee, A. Nag, V. Kocevski, P.K. Santra, M. Balasubramanian, S.

Chattopadhyay, T. Shibata, F. Schaefers, J. Rusz, C. Gerard, O. Eriksson, C.U. Segre, and D.D. Sarma, Phys. Rev. B 89, 224105 (2014).

用x射线吸收光谱法测量氧弥散强化钢中核壳纳米团簇的证据, S. Liu, G.R. Odette, and C.U. Segre, J. Nucl. Mater. 445, 50-56 (2014).

pt -双金属纳米颗粒的结构-性能-活性相关性:一个理论研究",Q. Jia, C.U. Segre, D. Ramaker, K. Caldwell, M. Trahan, S. Mukerjee,电化学学报88,604-613 (2013).

“LiFePO4阴极中价钒掺杂的温度依赖性”,K.L. Harrison, C.A. Bridges, M.P. Paranthaman, C.U. Segre, J. Katsoudas , V.A. Maroni , J.C. Idrobo, J.B. Goodenough, and A. Manthiram, Chem. Mater. 25, 768-781 (2013).

钌k边x射线吸收光谱法在模型亚单层钌-铂纳米颗粒电催化剂上甲醇氧化机理的原位研究, C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904-18912 (2013).

“PbTi1-xFexO3-δ固溶体系列的x射线粉末衍射细化”,H. Ganegoda, J.A. Kaduk, and C.U. Segre,粉末衍射28254 (2013).

x射线荧光光谱弯曲晶体劳厄分析仪的定量性能测量, C. Karanfil, G. Bunker, M. Newville, C.U. Segre, and L.D. Chapman, J. 同步辐射19,375-380 (2012).

“压电-巴克豪森效应与钢疲劳极限的相关性”,T. Erber, S. A. Guralnick, C. U. Segre, and W. Tong, J. Phys. D: Appl. Phys. 45, 465002 (2012).

氟官能化多孔石墨碳的光发射研究",H. Ganegoda, D.S. Jensen, D. Olive, L Cheng, C.U. Segre, M.R. Linford, and J. Terry, J. Appl. Phys. 111, 053705 (2012).

x射线荧光光谱弯曲晶体劳厄分析仪的定量性能测量, C. Karanfil, G. Bunker, M. Newville, and C.U. Segre, and L.D. Chapman, J. 同步辐射19,375- 380 (2012).

ZnS:ErF3薄膜电致发光荧光粉中Er的局部组成环境,M.R. Davidson, S. Stoupin, D. DeVito, J. Collingwood, C.U. Segre and P.H. Holloway, J. Appl. Phys. 109, 054505 (2011).

“Operando x射线吸收和红外燃料电池光谱”,E.A. Lewis, I. Kendrick, C. Grice, C.U. Segre and E.S. Smotkin, Electrochim. 学报,56,8827-8832 (2011).

“聚合物电解质燃料电池的Operando x射线吸收光谱”,E.S. Smotkin and C.U. Segre燃料电池科学:理论、基础与生物催化,主编. A. Wieckowski and J.K. 诺斯科夫,545-564(约翰·威利 & 儿子,霍博肯新泽西州,2010年).

“高温下钼在Pb中的氧化的x射线吸收光谱研究”,S. Liu, D. Olive, J. Terry, and C.U. Segre, J. Nucl. Mat. 392, 259-263 (2009).

“嵌入簇Δ-XANES对Pt吸附过程的建模”,E.A. Lewis, C.U. Segre, and E.S. Smotkin, Electrochim. Acta 10.1016/j.electacta.2009.06.067 (2009).

朱迪亚山铁器时代遗址青铜器的同步辐射x射线分析, E.S. Friedman, A.J. Brody, M.L. Young, J.D. Almer, C.U. Segre, and S.M. Mini, J. 考古科学 35, 1951-1960 (2008).

腐蚀掺铌锆合金金属/氧化物界面上的铌形态:x射线吸收近边结构研究, A. Froideval, C. Degueldre, C.U. Segre, M.A. Pouchon and D. Grolimund, Corrosion Science 50, 1313-1320 (2008).

声化学制备PtRu与庄信万丰PtRu在直接甲醇燃料电池中的结构分析, S. Stoupin, H. Rivera, Z. Li, C.U. Segre, C. Korzeniewski, D.J. Casadonte, H. Inoue and E.S. Smotkin, Phys. Chem. Chem. Phys. 10, 6430-6437 (2008).

Expertise

  • 多铁性材料的结构与性能, 使用同步辐射技术的催化和核材料